Fill in the missing number in the Fact Triangle.

1.
\[
\begin{array}{c}
40 \\
* , / \\
8 \\
5
\end{array}
\]

2.
\[
\begin{array}{c}
36 \\
* , / \\
6 \\
6
\end{array}
\]

3.
\[
\begin{array}{c}
45 \\
* , / \\
9 \\
5
\end{array}
\]

Write “T” if the following is a true number sentence, “F” if it is false, or “?” if you can’t tell.

4. 3 \times 5 = 18 \quad F

5. 8 \times 6 \quad ?
Write “T” if the following is a true number sentence, “F” if it is false, or “?” if you can’t tell.

6. 2×8 ?

7. $4 \times 6 < 24$ F

8. $5 \times (4 + 7) = 45$ F

9. $4 \times 12 / 2 > 7 \times 4$ F

Make a true sentence by filling in the missing number.

10. $39 = (7 \times 4) + 11$

11. $20 = (14 - 9) \times 4$

12. $(11 - 5) + (10 / 2) = 11$

13. $(9 / 3) \times (10 / 2) = 15$

Make a true sentence by inserting parentheses.

14. $(30 - 18) + 8 = 20$

15. $(55 - 8) + 13 = 60$

16. $(56 \div 8) + 15 = 22$

17. $3 \times (5 + 39) = 132$
18. Keith asked his classmates to estimate the number of cans of soda they drink each week. He recorded the information on the bar graph below. Use Keith’s bar graph to answer the following questions:

![Bar graph showing number of cans of soda consumed by students]

- a. What is the range of the number of cans? **8**
- b. What is the mode of the number of cans? **6 & 7**
- c. What is the median of the number of cans? **4.5**

19. The food sales records for one day at Tripoli Stadium showed that 2,627 turkey sandwiches were sold. A total of 4,151 sandwiches were sold that day. How many sandwiches sold that day were not turkey?

Answer: **1,524** sandwiches

Number model: **4,151, - 2,627 = 1,524**

20. The temperature on July 23rd was 15°C warmer than it was on June 23rd in a city. If the temperature was 29°C on June 23rd, then what was the temperature in that city on July 23rd?

Answer: **44°C**

Number model: **29°C + 15°C = 44°C**
21. Find the rule and complete the table.

<table>
<thead>
<tr>
<th>Rule</th>
<th>in</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

22. List all the factors of 12. \(1, 2, 3, 4, 6, 12\)

Find the solution of each open sentence.

23. \(18 = 12 + x\) \(x = 6\)

24. \(4 \times m = 28\) \(m = 7\)

25. \(x/9 = 2\) \(x = 18\)

26. \(z/7 = 7\) \(z = 49\)

27. \(16 - x = 2\) \(x = 14\)

28. \(2 \times 6 = 40 - t\) \(t = 28\)
29. Use the map and map scale to answer the following questions:

![Map of Montana with cities marked](image)

1 inch represents 200 miles

a. The distance between Missoula and Billings is about \[\text{2 \ inch(es) on the map.}\]
 That is about \[\text{400 \ miles.}\]

b. The distance between Glasgow and Bozeman is about \[\text{2 \ 1/2 \ inch(es) on the map.}\]
 That is about \[\text{500 \ miles.}\]

30. Complete the Venn diagram. Use at least 10 numbers.

<table>
<thead>
<tr>
<th>Multiples of 3</th>
<th>Multiples of 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 6</td>
<td>5 10</td>
</tr>
<tr>
<td>9 12</td>
<td>15 20</td>
</tr>
<tr>
<td>18</td>
<td>25 30</td>
</tr>
<tr>
<td>21 24</td>
<td>35 40</td>
</tr>
<tr>
<td>27</td>
<td>45 50</td>
</tr>
</tbody>
</table>
Part C: Challenge (Bonus)

31. **Name That Number**

Kato was playing a game of *Name That Number*. He had the following five number cards and target number:

<table>
<thead>
<tr>
<th>Cards</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

His teacher, Ms. Ayers, asked everyone to record their thinking. Here is what Kato wrote:

- \[(5 + 2 + 6 + 8) - 3 = 18\]
- \[(8/2 + 5) * 5 - 3 = 18\]
- \[(8 - 5 + 3) * 6 / 2 = 18\]

a. Ms. Ayers saw that Kato had made mistakes in writing two of his number sentences.
 - Circle the two number sentences with mistakes.

b. Describe two more ways to reach the target number of 18. **Explain:**
 You do NOT have to use all 5 numbers.
 - \[6 * 3 = 18\]
 - \[(3+2) + 5 + 8 + 18\]

Explain: Kato needs to add parentheses around the first 4 numbers in the first number sentence and change the last operation from addition to subtraction to correct it. In the second number sentence, she needs to remove the parentheses around the first 3 numbers and move it to the last two numbers to correct it.